

admetan

A new, comprehensive metaanalysis command

David Fisher

MRC Clinical Trials Unit at UCL

2018 London Stata Conference, 6th September 2018

Introduction to meta-analysis (MA)

- A statistical analysis which combines the results of several independent studies considered by the analyst to be 'combinable' (Huque 1988)
- Aggregate data (AD) MA uses published results; typically one observation (effect + variance) per study
- Individual participant data (IPD) MA uses original, raw data; single observation per *patient*.
- Basic inverse-variance approach with AD:

$$\theta_{pooled} = \frac{\sum_{i} w_{i} \theta_{i}}{\sum_{i} w_{i}}$$

where $w_i = 1/Var(\theta_i)$ = inverse of variance in study i.

(Image source: Wikipedia)

A brief history of meta-analysis in Stata

1997: meta (Sharp & Sterne)

1998: metan (Bradburn, Deeks & Altman)

Two packages released around the same time; slightly different functionality and capabilities; pre-twoway graphics

2008: metan (Harris, Bradburn, Deeks, Harbord, Altman & Sterne) – a comprehensive update, with twoway graphics etc.

2010: last SSC update to metan

2010: metaan (Kontopantelis & Reeves) released.
Focus on random-effects models, but fewer general features than metan

2013: **ipdmetan** (Fisher) presented at Stata London meeting; Stata Journal article followed in 2015; **admetan** is an ancillary ado-file 2018: **admetan** presented in its own right.

SSC monthly downloads

Using ssccount (Choodari-Oskooei & Morris, SJ 2016)

A recurring theme?

- "Stata should have a meta-analysis command [...] but does not" (Stata manual, c.1998?)
- "Supporting it [meta] is difficult ... quite a lot of [employer] time has gone into this ... [in the future] I will likely not have the opportunity, save in my own time, to continue this" (Sterne, 2004)
- "I'd be delighted if someone else took responsibility for metareg ... I have no interest in this any more" (Sharp, c.2004)
- Luckily, Ross Harris took over metan in ~2008 and pushed it into the 2010s ... but he too has long since changed jobs and priorities (N.B. I have his blessing for the admetan project)
- Is admetan any different??
 - While originally based heavily on metan's code, admetan/ipdmetan
 has evolved to be (hopefully) more general, and more easily
 editable/updateable by others in the future

What can admetan do?

- Everything that metan can do…
 - caveat: some (very few) things could be done directly with metan but only indirectly with admetan
- ... but in many cases better ...
 - forest plots with improved defaults (e.g. aspect, x-axis labelling);
 increased flexibility
 - better handling of returned values and added variables
- ... plus a whole lot more!
 - much larger range of random-effects models
 - cumulative and influence meta-analysis
 - integration with forestplot and ipdmetan
 - input can be a matrix instead of variables
 - more continuity-correction options
 - etc.

Syntax

oe v

Based on, and very similar to, syntax of metan:

```
admetan varlist [if] [in]
```

[, main_options forestplot(forestplot_options)]

... where *varlist* can be:

O-E and V from log-rank/Peto analysis (with logrank option)

A basic example

Taken from Harris et al, SJ 2008

- . use bcgtrial, clear
- . metan tcases tnoncases ccases cnoncases, rr fixedi lcols(trialnam startyr)
 xlabel(0.1, 10) favours(BCG reduces risk of TB # BCG increases risk of TB)

. admetan tcases tnoncases ccases cnoncases, study(trialnam) iv forestplot(lcols(startyr) xlabel(0.1 10) favours(BCG reduces risk of TB # BCG

increases risk of TB))

Trial name	trial started	Risk Ratio (95% CI)	% Weight
Canada	1933 ——	0.20 (0.09, 0.49)	1.11
Northern USA	1935	0.41 (0.13, 1.26)	0.66
Chicago	1941	0.25 (0.15, 0.43)	2.96
Georgia (Sch)	1947	1.56 (0.37, 6.53)	0.41
Puerto Rico	1949	0.71 (0.57, 0.89)	17.42
Georgia (Comm)	1950	0.98 (0.58, 1.66)	3.03
Madanapalle	1950	0.80 (0.52, 1.25)	4.22
UK	1950	0.24 (0.18, 0.31)	10.81
South Africa	1965	0.63 (0.39, 1.00)	3.83
Haiti	1965 ———	0.20 (0.08, 0.50)	0.97
Madras	1968	1.01 (0.89, 1.14)	54.58
Overall (I-squared = 92.0%)		0.73 (0.67, 0.80)	100.00
	.1	1 10	

Random-effects models

- Assume the true treatment effect is randomly, normally distributed between studies, with heterogeneity variance τ^2
- (By contrast, the fixed-effect model assumes a single true treatment effect, with all study variability due to residual error)
- Standard inverse-variance model:

$$\theta_{pooled} = \frac{\sum_{i} w_{i}^{*} \theta_{i}}{\sum_{i} w_{i}^{*}}$$

where $w_i^* = 1/\{Var(\theta_i) + \tau^2\}$ with τ^2 estimated from the data.

Random-effects models

- metan only has DerSimonian-Laird estimator of τ²
- ipdmetan and metaan are examples of recent commands with a range of random-effects options
- admetan extends the range still further:
 - All models available in ipdmetan are carried over (Fisher SJ 2015)
 - More recent additions include
 - Henmi and Copas's gamma approximation method (Henmi and Copas 2010)
 - Bartlett's correction with Profile Likelihood (Huizenga et al 2011)
 - Doi's "Quality Effects" model (Doi et al 2015)
 - An ADMA version of Kenward & Roger's mixed-model variance correction for REML (Morris et al 2018)

Random-effects models

...with some colourful forestplot options

- (same example dataset as before, from Harris et al SJ 2008)
- I previously discussed how to specifying colour/pattern options for plot elements in the context of ipdmetan (Fisher SJ 2015)
 - New: diamonds now constructed using twoway rarea, allowing fill colour

Cumulative and Influence MA

- cumulative and influence options to admetan give similar functionality to existing commands metacum and metainf
 - But benefit from integration with rest of admetan and forestplot!

Saved datasets ("results sets")

- Save data in a format from which forestplot can build a plot automatically, with no statistical modelling and minimal option-specification
 - Allows huge flexibility for forest plots
 - I've previously mentioned this in connection with ipdmetan
- Example use case: recreate metan's "second()" option (not currently available with admetan) for e.g. displaying fixed- and random-effects results on same forest plot
- Psuedo-code:
 - 1. Run first (e.g. fixed-effects) analysis; save results set
 - 2. Run second (e.g. random-effects) analysis; save results set
 - 3. Load first results set; append second results set
 - 4. Apply any additional tweaks
 - 5. Run forestplot.

Result using metan

(taken from Harris et al, SJ 2008)

- . use bcgtrial, clear
- . metan tcases tnoncases ccases cnoncases, rr fixedi second(random) lcols(trialnam authors startyr alloc latitude) counts astext(70) textsize(200) boxsca(80) xlabel(0.1,10) notable xsize(10) ysize(6)

Code using admetan

. restore

```
// Run random-effects model, using "summaryonly" option
. admetan tcases tnoncases ccases cnoncases, re nograph summaryonly
saving(random.dta)
// Run fixed-effects model, and create "results set"
. admetan tcases tnoncases ccases cnoncases, rr iv study(trialnam)
forestplot(lcols(authors startyr alloc latitude) counts switch(counts) xlabel(.1
1 10) astext(70) leftj) nograph saving(fixed.dta, replace)
. preserve
    use fixed.dta, clear
    local lblfmt : format LABELS
    replace LABELS = "Fixed-effects " + LABELS in `= N'
    append using random.dta
    replace LABELS = "Random-effects Overall" in `= N'
    replace WT = . in `= N'
    format `lblfmt' LABELS
    forestplot, useopts
```

MRC CTU at UCL

Result using admetan

Note the improved defaults with admetan relative to metan for aspect ratio, text size and box scaling

The future?

- Together, admetan and forestplot now provide a huge amount of functionality and flexibility
 - ipdmetan (and ipdover) provide additional capabilities for IPD
 - Results/coefficients from complex regression models can be passed to admetan or forestplot for presentational purposes (e.g. one-stage IPD MA!)
- Code is (hopefully) efficient, up-to-date and clear enough (e.g. comments; subroutines) for others to modify, add to, or take over entirely in the future
 - GitHub? ResearchGate?
- Issues for your consideration:
 - Repositories (SSC, SJ; findit) refer to ipdmetan; but admetan now arguably "core"
 - Partly for this reason, admetan lags way behind metan in terms of SSC downloads
 - How to resolve this? Should admetan have its own SSC page? How should forestplot, ipdmetan etc. be "bundled"?
 - Contact metan authors and propose that admetan "takes over"? (with suitable acknowledgments going forward)

Acknowledgments

- Ross Harris, Vince Wiggins, Patrick Royston for programming advice and support
- Various colleagues, particularly Tim Morris, for testing
- The many users who have contacted me via email or on StataList with issues or suggestions

Contact: d.fisher@ucl.ac.uk

References

- Huque MF (1998). Experiences with meta-analysis in NDA submissions. *Proceedings of the Biopharmaceutical Section of the American Statistical Association* 2; 28-33
- Sharp S, Sterne J (1997). sbe16: Meta-analysis. Stata Technical Bulletin 38: 9-14
- Bradburn MJ, Deeks JJ, Altman DG (1998). metan—an alternative meta-analysis command. *Stata Technical Bulletin* 44; 4-15
- Harris RJ, Bradburn MJ, Deeks JJ, Harbord RM, Altman DG, Sterne JAC (2008). metan: fixed- and random-effects meta-analysis. Stata Journal 8; 2-28
- Kontopantelis E, Reeves D (2010). metaan: Random-effects meta-analysis. *Stata Journal* 10; 395-407
- Fisher DJ (2015). Two-stage individual participant data meta-analysis and generalized forest plots. *Stata Journal* 15; 369-396
- Choodari-Oskooei B, Morris TP (2016). Quantifying the uptake of user-written commands over time. Stata Journal 16; 88-95
- Huizinga HM, Visser I, Dolan CV (2011). Testing overall and moderator effects in random effects metaregression. British Journal of Mathematical and Statistical Psychology; 64, 1-19
- Doi SAR, Barendregt JJ, Khan S, Thalib L, Williams GM (2015). Advances in the meta-analysis of heterogeneous clinical trials II: The quality effects model. Contemporary Clinical Trials 45; 123-129
- Morris TP, Fisher DJ, Kenward MG, Carpenter JR (2018). Meta-analysis of Gaussian individual patient data: two-stage or not two-stage? Statistics in Medicine; 37:1419-1438