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Using the lasso in applied statistics

The least absolute shrinkage and selection operator (lasso) is a
method

that produces point estimates for model coefficients and
can be used to select which covariates should be included in a
model

The lasso is used for problems of prediction and problems in
statistical inference

I am going to focus on estimating and getting reliable inference
for a parameter that has a causal interpretation
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Stata 16 has

lasso and elasticnet commands for prediction problems
Inferential lasso commands

poregress, pologit, popoisson, poivregress
dsregress, dslogit, dspoisson
xporegress, xpologit, xpopoisson, xpoivregress
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Estimating the effect of no2 class

I have an extract of the data Sunyer et al. (2017) used to
estimate the effect air pollution on the response time of primary
school children

htimei = no2 classiγ + xiβ + εi

htime measure of the response time on test of child i (hit time)
no2 class measure of the pollution level in the school of child i
xi vector of control variables that might need to be included

I want to estimate the effect no2 class on htime and a
confidence interval for the size of this effect

There are 252 controls in x, but I only have 1,036 observations

This is a high-dimensional model

I cannot reliably estimate γ if I include all 252 controls

3 / 36



Data

Use extract of data from Sunyer et al. (2017)

. use breathe7, clear

. local ccontrols "sev_home sev_sch age ppt age_start_sch oldsibl "

. local ccontrols "`ccontrols´ youngsibl no2_home ndvi_mn noise_sch"

.

. local fcontrols "grade sex lbweight lbfeed smokep "

. local fcontrols "`fcontrols´ feduc4 meduc4 overwt_who"

.

. local allcontrols "c.(`ccontrols´) i.(`fcontrols´) "

. local allcontrols "`allcontrols´ i.(`fcontrols´)#c.(`ccontrols´) "
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Potential Controls II

. describe htime no2_class `fcontrols´ `ccontrols´

storage display value
variable name type format label variable label

htime double %10.0g ANT: mean hit reaction time (ms)
no2_class float %9.0g Classroom NO2 levels (g/m3)
grade byte %9.0g grade Grade in school
sex byte %9.0g sex Sex
lbweight float %9.0g 1 if low birthweight
lbfeed byte %19.0f bfeed duration of breastfeeding
smokep byte %3.0f noyes 1 if smoked during pregnancy
feduc4 byte %17.0g edu Paternal education
meduc4 byte %17.0g edu Maternal education
overwt_who byte %32.0g over_wt WHO/CDC-overweight 0:no/1:yes
sev_home float %9.0g Home vulnerability index
sev_sch float %9.0g School vulnerability index
age float %9.0g Child´s age (in years)
ppt double %10.0g Daily total precipitation
age_start_sch double %4.1f Age started school
oldsibl byte %1.0f Older siblings living in house
youngsibl byte %1.0f Younger siblings living in house
no2_home float %9.0g Residential NO2 levels (g/m3)
ndvi_mn double %10.0g Home greenness (NDVI), 300m

buffer
noise_sch float %9.0g Measured school noise (in dB)
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An estimate of the effect

. poregress htime no2_class, controls(`allcontrols´)

Estimating lasso for htime using plugin
Estimating lasso for no2_class using plugin

Partialing-out linear model Number of obs = 1,036
Number of controls = 252
Number of selected controls = 11
Wald chi2(1) = 24.19
Prob > chi2 = 0.0000

Robust
htime Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.354892 .4787494 4.92 0.000 1.416561 3.293224

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Another microgram of NO2 per cubic meter increases the mean
reaction time by 2.35 milliseconds.
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Potential solutions

htime i = no2 class iγ + xiβ + εi

Suppose that x̃ contains the subset of x that must be included
to get a good estimate of γ for the sample size that I have

If I knew x̃, I could use the model

htime i = no2 class iγ + x̃i β̃ + εi

I am willing to assume the number of variables in x̃i is small
relative to the sample size

This is a sparsity assumption

The problem is that I don’t know which variables belong in x̃
and which do not
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Potential solutions

I don’t need to assume that the model

htime i = no2 class iγ + x̃i β̃ + εi (1)

is exactly the “true” process that generated the data

I only need to assume that the model (1) is sufficiently close to
the model that generated the data

Approximate sparsity assumption
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Covariate-selection problem

Now I have a covariate-selection problem

Which of the 252 potential controls in x belong in x̃ ?
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Theory-based model selection

The traditional approach would be to use theory to determine
which covariates should be included

Theory tells us to include controls x̌

The selected controls do not vary in repeated samples

Regress htime on no2 class and controls x̌

htime i = no2 class iγ + x̌i β̃ + εi

Bad news:
Estimate γ̂ can have large-sample bias, because theory picked
the wrong controls
Good news:
The standard error for γ̂ is reliable, because the covariates do
not vary in repeated samples
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lasso to the rescue

Many researchers want to use data-based methods like the lasso
or other machine-learning methods to perform the covariate
selection

These methods should be able to remove the bias (possibly)
arising from non-data-based selection of x̃

Some post-covariate-selection estimators provide reliable
inference for the few parameters of interest

Some do not
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What’s a lasso?

The linear lasso solves

β̂ = arg min
β

{
1/n

n∑
i=1

(yi − xiβ
′)
2

+ λ

p∑
j=1

ωj |βj |

}

where

λ > 0 is the lasso penalty parameter
x contains the p potential covariates
the ωj are parameter-level weights known as penalty loadings
λ and the ωj are called the lasso tuning parameters
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What’s a lasso?

β̂ = arg min
β

{
1/n

n∑
i=1

(yi − xiβ
′)
2

+ λ

p∑
j=1

ωj |βj |

}

You obtain the (unpenalized) OLS estimates at λ = 0 , when
p < n

As λ grows, the coefficient estimates get “shrunk” towards zero

The kink in the absolute value function causes some of the
elements of β̂ to be zero at the solution for some values of λ

There is a finite value of λ = λmax for which all the estimated
coefficients are zero
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What’s a lasso?

β̂ = arg min
β

{
1/n

n∑
i=1

(yi − xiβ
′)
2

+ λ

p∑
j=1

ωj |βj |

}

For λ ∈ (0, λmax) some of the estimated coefficients are exactly
zero and some of them are not zero.

This is how the lasso works as a covariate-selection method

Covariates with estimated coefficients of zero are excluded
Covariates with estimated coefficients that not zero are included
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Tuning parameters

λ and the ωj are called “tuning” parameters

They specify the weight that should be applied to the penalty
term

The tuning parameters must be selected before using the lasso
for prediction or model selection

Plug-in methods, cross validation, and the adaptive lasso are
used to select the tuning parameters

Plug-in methods are the default methods for the inferential lasso
commands
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A naive lasso-based approach

Now consider using lasso to solve the covariate selection problem
in our high-dimensional model

htimei = no2 classiγ + xiβ + εi

A “naive” solution is :

1 Always include the covariates of interest
2 Use covariate-selection to obtain an estimate of which

covariates are in x̃
Denote estimate by xhat

3 Use estimate xhat as if it contained the covariates in x̃
regress htime no2 class xhat
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Why naive approach fails

Unfortunately, naive estimators that use the selected covariates
as if they were x̃ provide unreliable inference in repeated samples

Covariate-selection methods make too many mistakes in
estimating x̃ when some of the coefficients are small in
magnitude

If your model only approximates the functional form of the true
model, there are approximation terms

The coefficients on some of the approximating terms are most
likely small
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Why the naive estimator performs poorly

The random inclusion or exclusion of the covariates with small
coefficients causes

the distribution of the naive post-selection estimator to be not
normal
the usual large-sample theory approximation to be invalid in
theory and unreliable in finite samples

Long literature about problems with naive estimators

See Leeb and Pötscher (2005); Leeb and Pötscher (2006); Leeb
and Pötscher (2008); and Pötscher and Leeb (2009)
See Belloni, Chernozhukov, and Hansen (2014a) and Belloni,
Chernozhukov, and Hansen (2014b)
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Partialing-out estimators

htime i = no2 class iγ + x̃i β̃ + εi

A series of seminal papers

Belloni, Chen, Chernozhukov, and Hansen (2012);
Belloni, Chernozhukov, and Hansen (2014b);
Belloni, Chernozhukov, and Wei (2016); and
Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey,
and Robins (2018)

derived partialing-out estimators that provide reliable inference
for γ after using covariate selection to determine which
covariates belong in x̃

The cost of using covariate-selection methods is that these
partialing-out estimators do not produce estimates for β̃
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An estimate of the effect

. poregress htime no2_class, controls(`allcontrols´)

Estimating lasso for htime using plugin
Estimating lasso for no2_class using plugin

Partialing-out linear model Number of obs = 1,036
Number of controls = 252
Number of selected controls = 11
Wald chi2(1) = 24.19
Prob > chi2 = 0.0000

Robust
htime Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.354892 .4787494 4.92 0.000 1.416561 3.293224

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Another microgram of NO2 per cubic meter increases the mean
reaction time by 2.35 milliseconds.
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Partialing-out estimator for linear model

Consider model

y = dγ + xβ + ε

For simplicity, d is a single variable, all methods handle multiple
variables

I discuss a linear model

Nonlinear models have similar methods that involve more details
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PO estimator for linear model (I)

y = dγ + xβ + ε

1 Use a lasso of y on x to select covariates x̃y that predict y

2 Regress y on x̃y and let ỹ be residuals from this regression

3 Use a lasso of d on x to select covariates x̃d that predict d

4 Regress d on x̃d and let d̃ be residuals from this regression

5 Regress ỹ on d̃ to get estimate and standard error for γ

Only the coefficient on d is estimated

Not estimating β can be viewed as the cost of getting reliable
estimates of γ that are robust to the mistakes that
model-selection techniques make
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PO estimator for linear model (II)

y = dγ + xβ + ε

1 Use a lasso of y on x to select covariates x̃y that predict y

2 Regress y on x̃y and let ỹ be residuals from this regression

3 Use a lasso of d on x to select covariates x̃d that predict d

4 Regress d on x̃d and let d̃ be residuals from this regression

5 Regress ỹ on d̃ to get estimate and standard error for γ

This is an extension of the partialing-out method for obtaining
the ordinary least squares (OLS) estimate for the coefficient and
standard error on d (Also known as the result of the
Frisch-Waugh-Lovell theorem)
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y = dγ + xβ + ε

1 Use a lasso of y on x to select covariates x̃y that predict y
2 Regress y on x̃y and let ỹ be residuals from this regression
3 Use a lasso of d on x to select covariates x̃d that predict d
4 Regress d on x̃d and let d̃ be residuals from this regression

5 Regress ỹ on d̃ to get estimate and standard error for γ

Heuristically, the moment conditions used in step 5 are unrelated
to the selected covariates

Formally, the moments conditions used in step 5 have been
orthogonalized, or “immunized” to small mistakes in covariate
selection

Chernozhukov, Hansen, and Spindler (2015a); and
Chernozhukov, Hansen, and Spindler (2015b)
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Double-selection estimators

y = dγ + xβ + ε

Double-selection estimators extend the PO approach

1 Use a lasso of y on x to select covariates x̃y that predict y

2 Use a lasso of d on x to select covariates x̃d that predict d

3 Let x̃u be the union of the covariates in x̃y and x̃d
4 Regress y on d and x̃u

The estimation results for the coefficient on d are the estimation
results for γ
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Double-selection estimators

DS estimators include the extra control covariates that make the
estimator robust to the mistakes that the lasso makes in
selecting covariates that affect the outcome

The DS estimator has two chances to find the relevant controls.

Belloni et al. (2016) report that the DS estimator performed a
little better than the PO in their simulations

PO and DS have the same large-sample properties
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. dsregress htime no2_class, controls(`allcontrols´)

Estimating lasso for htime using plugin
Estimating lasso for no2_class using plugin

Double-selection linear model Number of obs = 1,036
Number of controls = 252
Number of selected controls = 11
Wald chi2(1) = 23.71
Prob > chi2 = 0.0000

Robust
htime Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.370022 .4867462 4.87 0.000 1.416017 3.324027

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store dsplugin

Another microgram of NO2 per cubic meter increases the mean
reaction time by 2.37 milliseconds.
About the same as poregress estimate
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Cross-fitting / Double-machine-learning PO

Cross-fitting is also known as double machine learning (DML)

It uses split-sample techniques on PO estimators

to weaken the sparsity condition
to get better finite sample performance

Split-sample techniques further reduce the impact of covariate
selection on the estimator for γ

It’s the combination of a sample-splitting technique with a PO

estimator that gives cross-fit PO estimators their reliability

These cross-fit PO (XPO) estimators are recommended over DS

estimators and PO estimators

Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and
Robins (2018) discusses
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. xporegress htime no2_class, controls(`allcontrols´)

Cross-fit fold 1 of 10 ...
Estimating lasso for htime using plugin
Estimating lasso for no2_class using plugin

[Output Omitted]

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 252

Number of selected controls = 16
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 27.31
Prob > chi2 = 0.0000

Robust
htime Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.533651 .48482 5.23 0.000 1.583421 3.483881

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Another microgram of NO2 per cubic meter increases the mean
reaction time by 2.53 milliseconds.
About the same as poregress estimate
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Choosing λ

Recall that we must choose the tuning parameters λ and ωj

before using the lasso for model selection

The value of the tuning parameters determines which covariates
will be included and which will be excluded
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Choosing λ

Plug-in estimators find the value of the λ that is large enough to
dominate the estimation noise

Plug-in-based lasso tends to include the important covariates
and it is really good at not including covariates that do not
belong in the model

Cross validation (CV) selects the λ value that minimizes the
out-of-sample mean squared error (MSE) of the predictions

CV is excellent at including the important covariates and but it
tends to include many extra covariates that do not belong in
the model

The adaptive lasso is a multistep version of CV

The adaptive lasso is excellent at including the important
covariates and but it tends to include some extra covariates that
do not belong in the model
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Choosing λ

Including too many extra covariates can cause out {PO,DS,XPO}
estimator to perform poorly

(Including too many extra covariates slows the convergence rate
of the {PO,DS,XPO} estimator)
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. dsregress htime no2_class, controls(`allcontrols´) selection(cv) ///
> rseed(12345)

Estimating lasso for htime using cv
Estimating lasso for no2_class using cv

Double-selection linear model Number of obs = 1,036
Number of controls = 252
Number of selected controls = 36
Wald chi2(1) = 24.72
Prob > chi2 = 0.0000

Robust
htime Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.523082 .5074363 4.97 0.000 1.528525 3.517639

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store dscv

CV included 36 controls, while plug-in included 11 controls
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. dsregress htime no2_class, controls(`allcontrols´) selection(adaptive) ///
> rseed(12345)

Estimating lasso for htime using adaptive
Estimating lasso for no2_class using adaptive

Double-selection linear model Number of obs = 1,036
Number of controls = 252
Number of selected controls = 26
Wald chi2(1) = 23.92
Prob > chi2 = 0.0000

Robust
htime Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.476892 .5064696 4.89 0.000 1.48423 3.469554

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store dsadaptive

Adaptive included 26 controls, while plug-in included 11 controls, and
CV included 36 controls
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. lassoinfo dsplugin dscv dsadaptive

Estimate: dsplugin
Command: dsregress

No. of
Selection selected

Variable Model method lambda variables

htime linear plugin .1375306 5
no2_class linear plugin .1375306 6

Estimate: dscv
Command: dsregress

No. of
Selection Selection selected

Variable Model method criterion lambda variables

htime linear cv CV min. 9.129345 12
no2_class linear cv CV min. .280125 25

Estimate: dsadaptive
Command: dsregress

No. of
Selection Selection selected

Variable Model method criterion lambda variables

htime linear adaptive CV min. 11.90287 7
no2_class linear adaptive CV min. .0185652 20

Another microgram of NO2 per cubic meter increases the mean
reaction time by 2.35 milliseconds.
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Recommendations

I provided lots of details, but here are some take always

1 If you have time, use the cross-fit partialing-out estimator

xporegress, xpologit, xpopoisson, xpoivregress

2 If the cross-fit estimator takes too long, use either the
partialing-out estimator

poregress, pologit, popoisson, poivregress

or the double-selection estimator

dsregress, dslogit, dspoisson

3 Belloni, Chernozhukov, and Hansen (2014b) and Belloni,
Chernozhukov, and Wei (2016) report simulations in which the
DS estimator performed better than the PO estimator

4 In simulations that I have run, the PO, DS, and XPO estimators
perform better with plug-in than with CV or the adaptive lasso
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